sábado, 26 de marzo de 2011

El Hidrógeno como Vector Energético. Otra Alternativa de Futuro


El hidrógeno es el elemento químico más ligero y abundante en el universo.

En nuestro planeta apenas se encuentra en estado libre (200 Mt). Aunque su producción es un proceso fundamentalmente endotérmico, es decir, siempre gastaremos mas energía en producirlo que el que obtendremos en su utilización, la consideración del proceso económico y de gestión global de esta fuente energética en las esperadas condiciones futuras de la demanda energética puede aportar un resultado final que la convierta en competitiva. Esto quiere decir que o bien su producción debe ser fácil y barata o el coste y la oportunidad de su sustitución justifican su uso.

El hidrógeno destaca como combustible por el carácter limpio de su energética reacción de oxidación para formar agua (242 kJ/mol) y porque ésta es casi tres veces más energética por unidad de masa que la reacción de oxidación de los hidrocarburos y resto de combustibles fósiles.

Esta nueva fuente energética adquiere valor económico y competitividad al ser una alternativa del petróleo y del gas, sobre todo en el transporte, y al incorporarse al “mix” energético. El carácter finito de los combustibles fósiles, que en el caso del petróleo y del gas tienen fecha actual de agotamiento en el presente siglo, unido a la preocupación de estar concluyendo la fase de explotación fácil y de bajo coste del petróleo, inciden en la creciente importancia del hidrógeno como energía sustitutiva de estos. Además, hay que añadir que es una fuente energética limpia de gases del efecto invernadero en su uso, aunque no sea así en todos los métodos de producción.

En la actualidad, el hidrógeno se obtiene principalmente a partir de los combustibles fósiles, generándose gases de efecto invernadero. Sin embargo es posible su producción limpia mediante electrólisis del agua o disociando directamente esta molécula con temperaturas del orden de los 2.500 ºC. Este último procedimiento es objeto de investigación y está registrando avances muy importantes mediante los nuevos ciclos termoquímicos con catalizadores avanzados y membranas, logrando reducir dicha temperatura al entorno de los 900 ºC o incluso 550 ºC.

En la producción del calor necesario para alcanzar las citadas temperaturas y sin verter gases del efecto invernadero, se abren paso los reactores nucleares de alta temperatura (HTGR), para el rango de los 950 ºC y se añaden los reproductores rápidos para los valores de 550 ºC. En la actualidad hay funcionando prototipos de reactores HTGR conectados a una planta de generación de hidrógeno con un plan de pruebas enfocado a disponer de un modelo comercial en la próxima década. También existe una oportunidad para la energía solar mediante su concentración.

Téngase en cuenta que una tonelada de hidrógeno producida por el sistema actual de reformado (descomposición) de la molécula del gas natural (metano) genera 7,75 t de CO2, provenientes un 70% de la reacción química y un 30% de quemar parte de este metano para alcanzar la temperatura de reacción. Si en su lugar se aportase directamente vapor de agua calentado por un reactor nuclear entonces el CO2 sería un 30% menos.

Las reacciones de reformado del metano se realizan con un catalizador de níquel y a temperatura entre 550 y 900 ºC:
CH4 + H2O ↔ CO + 3H2 – 206 kJ/mol
CH4 + 2H2O ↔ CO2 +3H2 – 165 kJ/mol
CO2 + H2O ↔CO2 + H2 + 41 kJ/mol

La electrolisis mediante energía eléctrica ahora supone el 4% del total producido, con la restricción de su elevado coste. Se abre la posibilidad de producir esta electricidad con energías renovables pero hay que considerar los condicionantes que conlleva por su irregularidad, la ocupación del terreno necesaria y los costes finales de transporte, ya sea del hidrógeno o de la energía eléctrica.

La utilización del hidrógeno se hace en motores mediante su oxidación directa con el oxígeno, o últimamente mediante la tecnología de las celdas de combustible ahora en pleno desarrollo. Se trata de una “máquina” inversa a una batería, de forma que aportando por sus dos electrodos: ánodo y cátodo, hidrógeno y oxígeno, respectivamente, genera electricidad y agua, con rendimientos del 70%.

De confirmarse la viabilidad económica y de gestión del uso del hidrógeno, estaríamos en el umbral de una nueva era energética con un nuevo e importante “vector energético” capaz de crear una economía alternativa a la actual basada en el petróleo. Hablamos de vector pues es una energía que requiere ser elaborada y como tal es un producto y a la vez un servicio como la electricidad. El hidrógeno se utiliza hoy en la industria química y en la aeroespacial. También existen, ya, prototipos de vehículos impulsados por este gas circulando en algunos países.

Solo para poder mantener la demanda de la industria petroquímica, se estima que deberá duplicarse su producción a final de la presente década y cuadruplicarse en 20 años. Si a esto se le añade su posible incorporación a la economía del transporte (25% del consumo de energía primaria mundial) y a la de generación de calor (40%) y electricidad, entonces las necesidades de este combustible salen de escala.

La producción mundial de H2 supera los 50 Mt, cantidad suficiente para abastecer 150 millones de coches con celdas de combustible o alimentar energéticamente a cerca de 30 millones de hogares. Esta producción de H2 (2% de la demanda de energía primaria mundial) necesitaría la producción de 104 reactores nucleares dedicados.

Hablar del hidrógeno como fuente energética sostenible del futuro significa, finalmente, hablar de energía nuclear y de renovables para su producción.

En anteriores entradas ya nos hemos ocupado de las renovables. Por tanto, a partir de esta entrada, nos centraremos en la energía nuclear, aportando toda la información necesaria para comprender su física y su tecnología.

No hay comentarios:

Publicar un comentario